Markscheme

May 2016

Further mathematics

Higher level

Paper 1

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

General

Mark according to $\mathrm{RM}^{\text {™ }}$ Assessor instructions and the document "Mathematics HL: Guidance for e-marking May 2016". It is essential that you read this document before you start marking. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A O}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by $\mathrm{RM}^{\mathrm{TM}}$ Assessor.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award M0 followed by A1, as \boldsymbol{A} mark(s) depend on the preceding M mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means M1 for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final A1 in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	5.65685... (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4 Implied marks

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

Misread

If a candidate incorrectly copies information from the question, this is a misread (MR).
A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $M R$ leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:
$f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3))$
Award $\boldsymbol{A} 1$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10
 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work
If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required, but calculators with symbolic manipulation features (for example, TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution
Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. (a) (i) 17 is an element not a subset of P
(ii) 57 is not a prime number $\boldsymbol{R} \mathbf{1}$
(iii) any demonstration that this is the true statement because every set contains the empty set as a subset
(b) (i) $\quad f(1)=\phi$

A1
because 1 has no prime factors \quad R1
(ii) $\quad f(2310)=f(2 \times 3 \times 5 \times 7 \times 11)(=\{2,3,5,7,11\}) \quad$ A1
$n(f(2310))=5$
A1
(c) (i) not injective A1 because, for example, $f(2)=f(4)=\{2\}$ R1
(ii) not surjective A1
$f^{-1}(2,3,5,7,11,13)$ does not belong to S because $2 \times 3 \times 5 \times 7 \times 11 \times 13>2500$

R1
Note: Accept any appropriate example.
[4 marks]

Total [12 marks]

2. (a) $\mathrm{P}(B>15.5)(=\mathrm{P}(Z>0.5))$
(M1)
$=(1-0.69146)=0.309$
[2 marks]
(b) consider $V=B_{1}+B_{2}+B_{3}+B_{4}+B_{5}+B_{6}+B_{7}$
$\mathrm{E}(V)=98$
(M1)
$\operatorname{Var}(V)=63$ or equivalent
Note: No need to state V is normal.

$$
\mathrm{P}(V<100)=\left(\mathrm{P}\left(Z<\frac{2}{\sqrt{63}}=0.251976 \ldots\right)=0.599\right.
$$

Question 2 continued
(c) consider $W=R_{1}+R_{2}+R_{3}+R_{4}+R_{5}-\left(B_{1}+B_{2}+B_{3}+B_{4}+B_{5}+B_{6}+B_{7}\right)$
$\mathrm{E}(W)=2$
$\operatorname{Var}(W)=80+63=143$
$\mathrm{P}(W>0)=\left(\mathrm{P}\left(Z<\frac{2}{\sqrt{143}}\right)\right)$
$=0.566$

Total [11 marks]

3. (a) one solution is $x=-2, y=-3$ (or (3,4))
the general solution is $x=-2+5 N, y=-3+7 N$ (or $x=3+5 M, y=4+7 M)$
(b) a listing of small values of the product
(M1)
$\Rightarrow x=-2, y=-3$ (the least positive value of $x y$ is 6)
A1
[2 marks]
(c) use of "table" or otherwise to solve
$35 N^{2}-29 N+6=2014$ (or $35 M^{2}+41 M+12=2014$)
obtain $N=8$ (or $M=7$)
$x=38, y=53$

Total [8 marks]

4. (a) $\mathrm{H}_{0}: \mu=12.4 ; \mathrm{H}_{1}: \mu>12.4$

A1
(b) (i) t test is appropriate because the variance (standard deviation) is unknown

$$
v=9
$$

(ii) $t \geq 1.83$ (5\%); $t \geq 1.38$ (10%)

Note: Accept strict inequalities.

Question 4 continued
(c) (i) unbiased estimate of μ is 13.18

A1
Note: Accept 13.2.
unbiased estimate of σ^{2} is $2.34\left(1.531^{2}\right)$
A1
(ii) $\quad t_{\text {calc }}=\left(\frac{13.18-12.4}{\frac{1.531}{\sqrt{10}}}\right)=1.61$ or 1.65 A1
[3 marks]
(d) as $1.38<1.61<1.83 \quad$ R1
evidence to accept H_{0} at the 5% level, but not at the 10% level

Note: Accept the use of the p-value $=0.0708$.

Total [10 marks]

5. attempt to find the equation of the tangent at P M1
$y-x_{1}^{3}=3 x_{1}^{2}\left(x-x_{1}\right)$ A1 the tangent meets C when

$$
x^{3}-x_{1}^{3}=3 x_{1}^{2}\left(x-x_{1}\right) \quad \text { M1 }
$$

attempt to solve the cubic M1the x-coordinate of Q satisfies
$x^{2}+x x_{1}-2 x_{1}^{2}=0$ A1
hence $x_{2}=-2 x_{1}$ A1
hence $x_{3}=4 x_{1}$ A1hence x_{1}, x_{2}, x_{3} form the first three terms of a geometric sequence withcommon ratio -2 so the sequence is divergentR1AG

Note: Final R1 is not dependent on final 3 A1s providing they form a geometric sequence.
6. (a) $H_{2}=2 H_{1}+1$

$$
=3 ; H_{3}=7 ; H_{4}=15
$$

(b) $\quad H_{n}=2^{n}-1$

A1

Question 6 continued
(c) let $\mathrm{P}(n)$ be the proposition that $H_{n}=2^{n}-1$ for $n \in \mathbb{Z}^{+}$
from (a) $H_{1}=1=2^{1}-1$
so $\mathrm{P}(1)$ is true
assume $\mathrm{P}(k)$ is true for some $k \Rightarrow H_{k}=2^{k}-1$
then $H_{k+1}=2 H_{k}+1$
$=2 \times\left(2^{k}-1\right)+1$
$=2^{k+1}-1$
$\mathrm{P}(1)$ is true and $\mathrm{P}(k)$ is true $\Rightarrow \mathrm{P}(k+1)$ is true, hence $\mathrm{P}(n)$ is true for all $n \in \mathbb{Z}^{+}$by the principle of mathematical induction

Note: Only award the $\mathbf{R 1}$ if all earlier marks have been awarded.
7. (a) consider $\lim _{h \rightarrow 0+} f(0+h)=\lim _{h \rightarrow 0+}\left(2 h^{2}-3 h+1\right)$

M1
A1
$=1=f(0)$
M1
$\lim _{h \rightarrow 0-} f(0+h)=\lim _{h \rightarrow 0-}(-3 h+1)$
$=1=f(0)$
A1
hence f is continuous at $x=0$

Note: \quad The $=f(0)$ needs only to be seen once.
(b) consider
$\lim _{h \rightarrow 0+}\left(\frac{f(0+h)-f(0)}{h}\right)=\lim _{h \rightarrow 0+}\left(\frac{2 h^{2}-3 h+1-1}{h}\right)$
M1A1
$=\lim _{h \rightarrow 0+}\left(\frac{2 h^{2}-3 h}{h}\right)=-3$
$\lim _{h \rightarrow 0-} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0-} \frac{-3 h+1-1}{h}=-3$
M1A1
hence f is differentiable at $x=0$
8. (a) (i) let (x, y) be a point on C
then $(x+3)^{2}+y^{2}=k^{2}\left((x-5)^{2}+y^{2}\right)$
M1A1A1
Note: Award M1 for form of an Apollonius circle, A1 for each side.
rearrange, for example,
$\left(k^{2}-1\right) x^{2}-\left(10 k^{2}+6\right) x+\left(k^{2}-1\right) y^{2}+25 k^{2}-9=0$ A1
equate the x-coordinate of the centre as given by this equation to 13 :
$\frac{5 k^{2}+3}{k^{2}-1}=13$
M1A1
obtain $k^{2}=2 \Rightarrow k=\sqrt{2}$
(ii) METHOD 1
with this value of k, the equation can be reduced to the form
$(x-13)^{2}+y^{2}=128$
M1A1
obtain the radius $=\sqrt{128}(=8 \sqrt{2})$
METHOD 2
assuming N is the x-intercept of C between A and B
$\frac{\mathrm{AN}}{\mathrm{BN}}=\frac{16-r}{r-8}=\sqrt{2}$
$\Rightarrow r=8 \sqrt{2}$
Note: Accept answers given in terms of k, if no value of k found in (a)(i).
(iii) x-intercepts are $13 \pm 8 \sqrt{2} \quad$ A1
[11 marks]
(b) because N lies on the circle it satisfies the Apollonius property
hence $\mathrm{AN}=\sqrt{2} \mathrm{NB}$
R1
but as $\mathrm{AM}=\sqrt{2} \mathrm{MB}$ R1
by the converse to the angle-bisector theorem R1
$\mathrm{AM} \mathrm{M}=\mathrm{NMB}$

Total [14 marks]

9. (a) $5982=162 \times 36+150$

M1A1
$162=150 \times 1+12 \quad$ A1
$150=12 \times 12+6$
$12=6 \times 2+0 \Rightarrow \operatorname{gcd}$ is 6

A1
continued...

Question 9 continued
(b) (i) for example, $\operatorname{gcd}(4,4)=4$
$4 \neq 2 \quad$ R1
so R is not reflexive AG
for example
$\operatorname{gcd}(4,2)=2$ and $\operatorname{gcd}(2,8)=2$
M1A1
but $\operatorname{gcd}(4,8)=4(\neq 2)$
R1
so R is not transitive AG
(ii) EITHER
even numbers
A1
not divisible by 6 A1

OR
$\{2+6 n: n \in \mathbb{N}\} \cup\{4+6 n: n \in \mathbb{N}\}$
A1A1

OR
$2,4,8,10, \ldots$ A2
[7 marks]

Total [11 marks]

10. (a) METHOD 1
$2^{n}=(3-1)^{n} \quad$ M1
$=3^{n}+n 3^{n-1}(-1)+\frac{n(n-1)}{2} 3^{n-2}(-1)^{2}+\ldots+(-1)^{n}$
A1
since all terms apart from the last one are divisible by $3 \quad \boldsymbol{R 1}$
$2^{n} \equiv(-1)^{n}(\bmod 3) \quad$ AG

METHOD 2

attempt to reduce the powers of $2(\bmod 3)$
M1
$2^{0}=1(\bmod 3) ; 2^{1}=-1(\bmod 3) ; 2^{2}=1(\bmod 3) ; 2^{3}=-1(\bmod 3) \ldots \quad$ A1
since $1(\bmod 3) \times 2=-1(\bmod 3)$ and $-1(\bmod 3) \times 2=1(\bmod 3)$ the result can be generalized

R1
$2^{n} \equiv(-1)^{n}(\bmod 3) \quad$ AG

Question 10 continued
(b) the binary number $N=\left(a_{n} a_{n-1} \ldots a_{2} a_{1} a_{0}\right)_{2}$ has numerical value

$$
\begin{array}{lr}
a_{0} \times 1+a_{1} \times 2+a_{2} \times 2^{2}+\ldots+a_{n} \times 2^{n} & \text { A1 } \\
N=\left(a_{0}-a_{1}+a_{2}-\ldots(-1)^{n} a_{n}\right)(\bmod 3) & \text { M1A1 }
\end{array}
$$

(c) $\mathrm{ABBA}_{16}=10 \times 16^{3}+11 \times 16^{2}+11 \times 16+10 \times 1$

$$
\begin{equation*}
N=(1010)_{2} \times 2^{12}+(1011)_{2} \times 2^{8}+(1011)_{2} \times 2^{4}+(1010)_{2} \times 2^{0} \tag{A1}
\end{equation*}
$$

Note: Award $\boldsymbol{M} 1$ for expressing A and B in binary.

$$
N=(1010101110111010)_{2} \quad \text { A1 }
$$

11. suppose R is the midpoint of $B C$

Note: The first mark is for initiating a relevant discussion for "if" or "only if" by Ceva's theorem.

$$
\begin{aligned}
& \frac{\mathrm{AP}}{\mathrm{~PB}} \times \frac{\mathrm{BR}}{\mathrm{RC}} \times \frac{\mathrm{CQ}}{\mathrm{QA}}=1 \\
& \Rightarrow \frac{\mathrm{~A} 1}{\mathrm{~PB}}=\frac{\mathrm{AQ}}{\mathrm{QC}} \text { or equivalent } \\
& \Rightarrow \frac{\mathrm{PB}}{\mathrm{AP}}+1=\frac{\mathrm{QC}}{\mathrm{AQ}}+1 \\
& \Rightarrow \frac{\mathrm{AP}+\mathrm{PB}}{\mathrm{AP}}=\frac{\mathrm{AQ}+\mathrm{QC}}{\mathrm{AQ}} \\
& \Rightarrow \frac{\mathrm{AB}}{\mathrm{AP}}=\frac{\mathrm{AC}}{\mathrm{AQ}} \\
& \Rightarrow \text { (M1) } \\
& \Rightarrow \text { triangles APQ and } \mathrm{ABC} \text { are similar with common base angles } \\
& \begin{array}{l}
\text { so } \mathrm{PQ} \text { is parallel to } \mathrm{BC} \\
\text { statement of the converse } \\
\text { the argument is reversible }
\end{array}
\end{aligned}
$$

12. (a) Accept any valid reasoning:

Example 1:

$(1,0,0)$ lies on the plane, however linear combinations of this do not (for example $(2,0,0)$)
hence the position vectors of the points on the plane do not form a vector space

Example 2:

the given plane does not pass through the origin (or the zero vector is not the position vector of any point on the plane)
hence the position vectors of the points on the plane do not form a vector space
(b) (i) (the set of position vectors is non-empty)
let $\boldsymbol{x}_{1}=\left(\begin{array}{l}x_{1} \\ y_{1} \\ z_{1}\end{array}\right)$ be the position vector of a point on the plane and $a \in \mathbb{R}$
then the coordinates of the position vector of $a \boldsymbol{x}$ satisfy the equation for the plane because $a x_{1}-a y_{1}-a z_{1}=a\left(x_{1}-y_{1}-z_{1}\right)=0$
let $\boldsymbol{x}_{2}=\left(\begin{array}{l}x_{2} \\ y_{2} \\ z_{2}\end{array}\right)$ be the position vector of another point on the plane
consider $\boldsymbol{x}_{3}=\boldsymbol{x}_{1}+\boldsymbol{x}_{2}$
then the coordinates of $\boldsymbol{x}_{3}=\left(\begin{array}{l}x_{3}=x_{1}+x_{2} \\ y_{3}=y_{1}+y_{2} \\ z_{3}=z_{1}+z_{2}\end{array}\right)$ satisfy
$x_{3}-y_{3}-z_{3}=\left(x_{1}+x_{2}\right)-\left(y_{1}+y_{2}\right)-\left(z_{1}+z_{2}\right)$
$=0$
subspace conditions established
Note: The above conditions may be combined in one calculation.
continued...

Question 12 continued
(ii) if $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ is the position vector of a second point on the plane orthogonal
to the given vector, then
$a-b-c=0$ and $a+2 b-c=0$
(A1)(A1)
for example $\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ completes the basis
(iii) the basis for $\left(\mathbb{R}^{2}\right)$ can be augmented to an orthogonal basis for \mathbb{R}^{3} by adjoining $\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right) \times\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$

$$
=\left(\begin{array}{c}
2 \tag{A1}\\
-2 \\
-2
\end{array}\right)
$$

(iv) attempt to solve $\alpha\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)+\beta\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)+\gamma\left(\begin{array}{c}2 \\ -2 \\ -2\end{array}\right)=\left(\begin{array}{c}4 \\ 0 \\ -2\end{array}\right)$ obtain $\alpha=\beta=\gamma=1$
13. (a) using $\left(\frac{t^{n}-1}{t-1}\right)=1+t+t^{2}+\ldots t^{n-1}$

$$
G_{n}(t)=0+\frac{t}{n}+\frac{t^{2}}{n}+\frac{t^{3}}{n}+\ldots \frac{t^{n}}{n}+0 \times t^{n+1}+0 \times \ldots
$$

A1A1
Note: A1 for the non-zero terms, A1 for the observation that all other terms are zero.
the statement that the coefficient of t^{k} gives $\mathrm{P}\left(X_{n}=k\right)$
R1
hence $\mathrm{P}\left(X_{n}=k\right)= \begin{cases}\frac{1}{n} & \text { for } 1 \leq k \leq n \\ 0 & \text { otherwise }\end{cases}$

Question 13 continued
(b) $\mathrm{E}\left(X_{n}\right)=0 \times 0+1 \times \frac{1}{n}+2 \times \frac{1}{n}+3 \times \frac{1}{n}+\ldots n \times \frac{1}{n}+(n+1) \times 0+\ldots \times 0$
(M1)(A1)

$$
\begin{align*}
& =\frac{1}{n} \times \sum_{k=1}^{k=n} k \\
& =\frac{1}{n} \times \frac{1}{2} n(n+1)=\frac{n+1}{2} \tag{A1}
\end{align*}
$$

Note: Accept use of $G^{\prime}(1)$.
[3 marks]
(c) $\quad X_{n-1}$ and X_{n+1} are independent $\Rightarrow \mathrm{E}\left(X_{n-1} \times X_{n+1}\right)=\mathrm{E}\left(X_{n-1}\right) \times \mathrm{E}\left(X_{n+1}\right)$
$=\frac{n}{2} \times \frac{n+2}{2}$
required to solve $n^{2}<6 n($ or $n+2<8)$)
M1
solution: $(2 \leq) n<6$
A1
14. (a) (i) $\boldsymbol{M}^{2}=\boldsymbol{M} \boldsymbol{M}$ only exists if the number of columns of \boldsymbol{M} equals the number of rows of M R1 hence \boldsymbol{M} is square $\boldsymbol{A G}$
(ii) apply the determinant function to both sides
$\operatorname{det}\left(\boldsymbol{M}^{2}\right)=\operatorname{det}(\boldsymbol{M})$
use the multiplicative property of the determinant $\operatorname{det}\left(\boldsymbol{M}^{2}\right)=\operatorname{det}(\boldsymbol{M}) \operatorname{det}(\boldsymbol{M})=\operatorname{det}(\boldsymbol{M})$
hence $\operatorname{det}(\boldsymbol{M})=0$ or 1
(b) (i) attempt to calculate N^{2}
obtain $\left(\begin{array}{ll}-a^{2} & 2 a^{2} \\ -a^{2} & 2 a^{2}\end{array}\right)$
equating to N M1
to obtain $a=-1$ A1
continued...

Question 14 continued
(ii) $\quad \boldsymbol{N}=\left(\begin{array}{ll}-1 & 2 \\ -1 & 2\end{array}\right)$
$\boldsymbol{N}-\lambda \boldsymbol{I}=\left(\begin{array}{cc}-1-\lambda & 2 \\ -1 & 2-\lambda\end{array}\right)$
$(-1-\lambda)(2-\lambda)+2=0$
$\lambda^{2}-\lambda=0$
λ is 1 or 0
A1
(iii) let $\lambda=1$
to obtain $\left(\begin{array}{ll}-1 & 2 \\ -1 & 2\end{array}\right)\binom{x}{y}=\binom{x}{y}$ or $\left(\begin{array}{ll}-2 & 2 \\ -1 & 1\end{array}\right)\binom{x}{y}=\binom{0}{0}$
hence eigenvector is $\binom{x}{x}$
A1
let $\lambda=0$
to obtain $\left(\begin{array}{ll}-1 & 2 \\ -1 & 2\end{array}\right)\binom{x}{y}=\binom{0}{0}$
M1
hence eigenvector is $\binom{2 y}{y}$
A1

Note: Accept specific eigenvectors.
[12 marks]

